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Abstract

Highly accurate analytical type solutions are obtained by means of the superposition method for the free
in-plane vibration frequencies and mode shapes of fully clamped rectangular plates. The modes are
separated into three distinct families and each family is handled separately. Excellent agreement is
encountered when computed results are compared with results obtained by other methods. Following the
obtaining of solutions for the fully clamped plate, it is shown how this work can be exploited to obtain
exact Levy type solutions for the free in-plane vibration modes of the plate with simple support along all
edges. The pure shear and extensional vibration modes characteristic of the latter plate problem are
handled separately. Again, excellent agreement with results obtained by other means is encountered. A
limited number of mode shapes for the fully clamped plate are presented.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

While the number of technical papers related to free in-plane vibration of rectangular plates
appearing in the literature is extremely small in comparison to those related to plate lateral
vibration there is an ongoing interest in the in-plane vibration subject. Particular applications
involve the vibration induced in plates as a result of the action of tangential fluid boundary layers.
This type of problem is encountered, for example, in the design of ship hulls.

In an earlier publication the present author addressed the problem of conducting a free in-plane
vibration analysis of the completely free rectangular plate [1]. Reference was made to a number of
related papers appearing in the literature over the past three decades. Of particular interest was
the work of Bardell et al. published in 1996 [2].
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In the earlier paper the superposition method was introduced as an analytical technique for
obtaining highly accurate frequencies and mode shapes for the completely free plate. It was shown
that application of the method was straightforward and convergence was very rapid. Excellent
agreement was obtained upon comparing computed results with those obtained in Ref. [2]. In this
latter paper a solution was achieved by means of a Rayleigh–Ritz approach, where a rather
complicated set of functions were utilized to represent plate in-plane displacements. It is one of the
significant advantages of the superposition method that no such functions need be selected.

The function of the present paper is to compliment the earlier work of the author, by presenting
solutions for the fully clamped plate and to demonstrate how exact Levy type solutions are
obtained for the two families of vibration modes of the rectangular plate with simple support
along all edges. It will then become apparent to the reader that the same approach can be
exploited to obtain solutions for plates with various combinations of clamped, free, and simple
support edge conditions.

2. Mathematical procedure

2.1. The governing differential equations

Both the governing differential equations and expressions for the in-plane stresses were
developed in dimensionless form in the earlier publication [1]. Consequently, only the fully
developed version will be presented here in the interest of completeness. The non-dimensionalized
differential equations are written as
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where all quantities introduced here are defined in the list of nomenclature. Note that l2; the
dimensionless frequency is defined as, l2 ¼ oa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
: Here o is the circular frequency of

plate vibration and r equals plate mass density.
Dimensionless plate in-plane normal and shear stresses are defined, respectively, as
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These stress–displacement relationships have been employed to express the basic equilibrium
equations (1) and (2) in terms of in-plane plate displacements.

2.2. Analysis of fully clamped plate free vibration

It will be appreciated, in view of the uniform boundary conditions (in-plane displacements
normal to and parallel to the edges are everywhere zero), that plate displacement will possess a
certain degree of symmetry with respect to the plate central axis. We have chosen to follow the
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practice established earlier and define a vibration mode as being symmetric about a plate central
axis if displacement normal to this axis is symmetrically distributed about it [1]. In that case
displacement parallel to the axis will be antisymmetrically distributed about it. Conversely, if
displacement normal to a central axis is antisymmetrically distributed about it, then displacement
parallel to this axis will be symmetrically distributed about it. We define such modes as being
antisymmetrically distributed about the axis.

Accordingly, we define symmetric–symmetric free vibration modes as those where displace-
ments have a symmetric distribution with respect to the two central axes of the plate.
Antisymmetric–antisymmetric modes are those for which displacements have an antisymmetric
distribution with respect to each of the central axes. Symmetric–antisymmetric modes are those
for which displacements have a symmetric distribution with respect to the central x-axis and an
antisymmetric distribution with respect to the Z-axis. We can always choose our central axes
orientation so that these conditions are fulfilled for symmetric–antisymmetric mode vibration.

Having classified the possible modes of in-plane vibration for the fully clamped plate in
this manner it will be seen that we need analyze one-quarter of the plate only, when examining any
of the possible three families of free in-plane vibration modes. It will also be found that, in this
way, we avoid the common problem of uncovering double eigenvalues when analyzing square
plates.

2.2.1. Symmetric–symmetric modes of the fully clamped plate
Attention is focused on the lower right quarter of the fully clamped plate of interest. This

quarter plate segment is shown schematically on the left-hand side of Fig. 1. Small pairs of circles
adjacent to the edges x ¼ 0; and Z ¼ 0; indicate that displacements along these edges satisfy the
symmetric mode conditions as discussed earlier. The two forced vibration problems depicted to
the right of the figure are to be solved and superimposed, one-upon-the-other. Constants
appearing in their solutions are to be so constrained that the net boundary conditions satisfied by
the superimposed pair are identical to those to be imposed on the quarter plate of interest (the
superposition method).

We now focus attention on the first forced vibration problem, or building block. It also has
symmetric boundary conditions imposed on the edges lying along its axes. A condition of zero
displacement parallel to the other two edges is to be imposed. The edge, Z ¼ 1; is driven by a
harmonic distributed normal stress of circular frequency o:
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We choose to represent the amplitude of the in-plane displacements of this building block with
Levy type series as

Vðx; ZÞ ¼
XN

m¼1;2

VmðZÞ sin mpx ð3Þ

and

Uðx; ZÞ ¼
XN

m¼1;2

UmðZÞ cos mpx: ð4Þ

It is to be noted that these series satisfy all of the specified boundary conditions along the edges at
the extremities of the trigonometric functions as required of Levy type solutions.

Substituting these series representations into the governing differential Eqs. (1) and (2), it is
readily shown that, for any value of ‘m’ we obtain the equations
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where superscripts indicate differentiation with respect to the variable Z:
The symbol EMP represents the quantity mp; with EMPS equals the quantity EMP squared.
In all analytical work pertaining to the quarter plate the quantity l2 is non-dimensionalized

with respect to the quarter plate edge length ‘a’.
Collecting the terms of Eqs. (5) and (6) it is found that we may re-write them as
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Eqs. (7) and (8) constitute a coupled pair of ordinary homogeneous differential equations
involving the quantities UmðZÞ and VmðZÞ:

Through a simple process of differentiating and adding and subtracting of resulting equations,
we are able to isolate a single ordinary differential equation involving the quantity VmðZÞ as
follows:

V IV
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where b ¼ ½am1cm2 � bm1bm2 þ cm1am2�=ðam1am2Þ; and c ¼ cm1cm2=ðam1am2Þ:
Denoting the square of the roots of the characteristic equation related to Eq. (9) as e21 and e22; we
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ffiffiffiffiffi
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It is found that for all work undertaken here the quantity b2 � 4c is positive. This means that
the quantities e21 and e22 will be real, though they may be positive or negative. Denoting those
quantities as Root1; and Root2; respectively, and introducing the quantities, bm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Root1j j

p
; and

gm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRoot2j

p
; it follows that three possible forms of solution for Eq. (9) exist. They are:

Solution 1: Root1X0.0, Root2p0.0

VmðZÞ ¼ Am sinh bmZþ Bm cosh bmZþ Cm sin gmZþ Dm cos gmZ; ð10Þ

where Am; Bm; etc., are constants to be determined.
Solution 2: Root1p0.0, Root2p0.0

VmðZÞ ¼ Am sin bmZþ Bm cos bmZþ Cm sin gmZþ Dm cos gmZ: ð11Þ

Solution 3: Root1X0.0, Root2X0.0

VmðZÞ ¼ Am sinh bmZþ Bm cosh bmZþ Cm sinh gmZþ Dm cosh gmZ: ð12Þ

We now turn to obtaining the vibratory response of the first building block of Fig. 1. It will be
obvious that all terms antisymmetric about the x-axis must be deleted for each of the above
solution forms. This is because of the boundary conditions to be imposed along this axis. We
focus on the three solution forms, one at a time.

Case 1: Solution 1 applicable

VmðZÞ ¼ Bm cosh bmZþ Dm cos gmZ: ð13Þ

We next consider the quantity UmðZÞ: Focusing on Eq. (7) it is seen that we may express UmðZÞ in
terms of U 00

mðZÞ and V 0
mðZÞ: However, Eq. (8) permits us to express U 00

mðZÞ in terms of V 000
m ðZÞ and

V 0
mðZÞ: Utilizing these relationships, along with Eq. (13), above, we obtain

UmðZÞ ¼ Bma2m sinh bmZþ Dma4m sin gmZ; ð14Þ

where a2m ¼ bm½am1am2b
2
m þ am1cm2 � bm1bm2�=ðcm1bm2Þ and a4m ¼ gm½am1am2g2

m � am1cm2 þ
bm1bm2�=ðcm1cm2Þ:

We note that UmðZÞ has a distribution antisymmetric with respect to the x-axis. Next, enforcing
the condition that UmðZÞ equals zero, along the driven edge, we obtain

VmðZÞ ¼ Bm½cosh bmZþ y1m cos gmZ�

and
UmðZÞ ¼ Bm½a2m sinh bmZþ y1ma4m sin gmZ�; ð15Þ

where y1m ¼ �a2m sinh bm=ða4m sin gmÞ:
The distribution of amplitude of the normal harmonic driving stress acting along the edge,

Z ¼ 1; is expanded in the same sine series as utilized in Eq. (3), thus,

s�y jZ¼1 ¼
XN

m¼1;2

Em sin mpx: ð16Þ

We may also write for the present building block,

s�y jZ¼1 ¼
1

f
@VmðZÞ
@Z

����
Z¼1

: ð17Þ
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Equating the right-hand sides of Eqs. (20) and (21), we obtain for any value of ‘m’,

VmðZÞ ¼ Emy11m½cosh bmZþ y1m cos gmZ� ð18Þ

and

UmðZÞ ¼ Emy11m½a2m sinh bmZþ a4my1m sin gmZ�; ð19Þ

where y11m ¼ f=½bm sinh bm � y1mgm sin gm�:
We thus have available the response of the building block for any distributed normal driving

stress along the edge, Z ¼ 1; when solution 1 is applicable.
It will be appreciated that an identical procedure will be followed to obtain solution for the

building block response when the other two forms of solution are applicable. Only the results thus
obtained will be provided here.

Case 2: Solution 2 applicable

VmðZÞ ¼ Emy11m½cos bmZþ y1m cos gmZ� ð20Þ

and

UmðZÞ ¼ Emy11m½a2m sin bmZþ a4my1m sin gmZ�; ð21Þ

where

y1m ¼ �
a2m sin bm

a4m sin gm

; y11m ¼ �f=ðbm sin bm þ y1mgm sin gmÞ;

a2m ¼ bm½am1am2b
2
m � am1cm2 þ bm1cm2�=ðcm1bm2Þ

and

a4m ¼ gm½am1am2g2
m � am1cm2 þ bm1cm2�=ðcm1bm2Þ:

Case 3: Solution 3 applicable

VmðZÞ ¼ Emy11m½cosh bmZþ y1m cosh gmZ� ð22Þ

and

UmðZÞ ¼ Emy11m½a2m sinh bmZþ y1ma4m sinh gmZ�; ð23Þ

where

y1m ¼ �
a2m sinh bm

a4m sinh gm

; y11m ¼
f

bm sinh bm þ y1mgm sinh gm

;

a2m ¼ bm½am1am2b
2
m þ am1cm2 � bm1bm2�=ðcm1bm2Þ;

a4m ¼ gm½am1am2g2
m þ am1cm2 � bm1bm2�=ðcm1bm2Þ:

The entire solution for the response of the first building block of Fig. 1 is thus available.
We next focus attention on the second building block of Fig. 1. It has a condition of zero

displacement parallel to the edge, x ¼ 1; to be imposed. This same edge is driven by a distributed
harmonic normal stress of circular frequency o: It will be obvious, therefore, that the solution for
this building block can be extracted from that of the first through a proper interchange of
variables.
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In order to avoid confusion we use the subscript ‘n’ in connection with the second building
block. Also, we will continue to utilize the symbols U and V to designate displacements parallel to
the x and Z axes, respectively. After interchange of the variables x and Z we express the response of
this building block (seeEqs. (3) and (4)) as

Uðx; ZÞ ¼
XN
n¼1;2

UnðxÞsin npZ ð24Þ

and

Vðx; ZÞ ¼
XN
n¼1;2

VnðxÞcos npZ: ð25Þ

Before extracting the solutions for UnðxÞ and VnðxÞ from those related to the earlier building block
one must proceed as follows:

1. Temporarily replace l2 by the quantity l2b=a:
2. Replace symbols am1; am2; etc., of the earlier solution with corresponding symbols an1; an2; etc.

Also, symbols EMP and EMPS become ENP and ENPS; respectively, where ENP ¼ np; and
ENPS ¼ ENP squared.

3. Temporarily replace the plate aspect ratio with its inverse.

In the case of Solution 1, we will obtain, for example,

UnðxÞ ¼ Eny11n½cosh bnxþ y1n cos gnx� ð26Þ

and

VnðxÞ ¼ Eny11n½a2n sinh bnxþ y1na4n sin gnx�: ð27Þ

The reader will have no difficulty extracting the quantities y1n; y2n; a2n; etc., for this solution, and
solutions of the other two forms from the material presented for the first building block.

Before beginning to set up the eigenvalue matrix for the symmetric–symmetric mode analysis it
is preferable to discuss building block solutions related to the antisymmetric–antisymmetric, and
symmetric–antisymmetric families of modes as discussed earlier.

2.2.2. Antisymmetric–antisymmetric modes of the fully clamped plate

The quarter plate and building blocks utilized in connection with the analysis of this
mode family differ from those of Fig. 1 in one respect only. Displacements normal to the co-
ordinate axes now have a distribution which is antisymmetric with respect to these axes.
Displacements parallel to the co-ordinate axes now have a distribution which is symmetric with
respect to them.

Levy type solutions for the displacements Vðx; ZÞ and Uðx; ZÞ can now be represented as

Vðx; ZÞ ¼
XN

m¼1;2

VmðZÞcos
ð2m � 1Þpx

2
ð28Þ
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and

Uðx; ZÞ ¼
XN

m¼1;2

UmðZÞsin
ð2m � 1Þpx

2
: ð29Þ

Substituting the above expressions in the original equilibrium equations we again arrive at the
equilibrium Eqs. (7) and (8), where now

am1 ¼
a66

f2
; bm1 ¼ �

EMP

f
½a66 þ a12�; cm1 ¼ l4 � a11EMPS;

am2 ¼
a11

f2
; bm2 ¼

EMP

f
½a12 þ a66�; and cm2 ¼ l4 � a66EMPS:

Here, EMP ¼ ð2m � 1Þp=2; and EMPS ¼ EMP squared.
Note that the above quantities, am1; etc., differ slightly from those used in the symmetric–

symmetric mode analysis. In fact, a differential equation governing the quantity VmðZÞ identical in
form to Eq. (9) is now obtained, with the same expressions for quantities b and c as used in the
earlier equation. We thus arrive at the same three possible forms of solution for VmðZÞ as given by
Eqs. (10)–(12).

Solutions for the response of the first building block of the present pair are obtained by
following a procedure identical to that described for the corresponding building blocks of the
earlier pair. The principal difference is that now terms related to the quantity V and symmetric
about the x-axis must be deleted. Only the results obtained when the analysis is carried out are
presented here.

Case 1: Solution 1 applicable

VmðZÞ ¼ Emy11m½sinh bmZþ y1m sin gmZ�; ð30Þ

UmðZÞ ¼ Emy11m½a1m cosh bmZþ y1ma3m cos gmZ�; ð31Þ

where

y11m ¼
f

½bm cosh bm þ gmy1m cos gm�
; y1m ¼ �

a1m cosh bm

a3m cos gm

;

a1m ¼ bm½am1am2b
2
m þ am1cm2 � bm1bm2�=ðcm1bm2Þ

and

a3m ¼ �gm½am1am2g2
m þ am1cm2 � bm1bm2�=ðcm1bm2Þ:

Case 2: Solution 2 applicable

VmðZÞ ¼ Emy11m½sin bmZþ y1m sin gmZ�; ð32Þ

UmðZÞ ¼ Emy11m½a1m cos bmZþ y1ma3m cos gmZ�; ð33Þ
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where

y11m ¼
f

½bm cos bm þ y1mgm cos gm�
; y1m ¼ �

a1m cos bm

a3m cos gm;
;

a1m ¼ �bm½am1am2b
2
m � am1cm2 þ bm1bm2�=ðcm1bm2Þ

and

a3m ¼ �gm½am1am2g2
m � am1cm2 þ bm1bm2�=ðcm1bm2Þ:

Case 3: Solution 3 applicable

VmðZÞ ¼ Emy11m½sinh bmZþ y1m sinh gmZ�; ð34Þ

UmðZÞ ¼ Emy11m½a1m cosh bmZþ y1ma3m cosh gmZ�; ð35Þ

where

y11m ¼
f

½bm cosh bm þ gmy1m cosh gm�
; y1m ¼ �

a1m cosh bm

a3m cosh gm

;

a1m ¼ bm½am1am2b
2
m þ am1cm2 � bm1bm2�=ðcm1bm2Þ

and

a3m ¼ gm½am1am2g2
m þ am1cm2 � bm1bm2�=ðcm1bm2Þ:

A solution for the response of the second building block associated with antisymmetric–
antisymmetric vibration modes is extracted from the solution given immediately above in a
manner identical to that described in connection with the analysis of the symmetric–symmetric
mode vibration.

2.2.3. Symmetric–antisymmetric vibration modes of the fully clamped plate

Analysis of this family of free vibration modes is achieved by superposition of the pair of
building blocks shown schematically in Fig. 2. Both building blocks have displacement normal to
the x-axis distributed symmetrically about this axis, and displacement normal to the Z-axis
distributed antisymmetrically about it.

It will be obvious that Levy type representations for the in-plane displacements U and V of the
first building block will again be given by Eqs. (28) and (29) of the antisymmetric–antisymmetric
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mode study. Quantities am1; bm1; etc., will be identical with those given for the earlier study. The
only way the present building block differs from the earlier one lies in the fact that in the
expressions for displacement VmðZÞ of the present building block we must delete those terms
antisymmetric about the x-axis. This presents no difficulty and the solution for the first building
block of the present pair is presented as follows:

Case 1: Solution 1 applicable

VmðZÞ ¼ Emy11m½cosh bmZþ y1m cos gmZ� ð36Þ

and

UmðZÞ ¼ Emy11m½a2m sinh bmZþ y1ma4m sin gmZ�; ð37Þ

where

y11m ¼
f

bm sinh bm � y1mgm sin gm

; y1m ¼ �
a2m sinh bm

a4m sin gm

;

a2m ¼ bm½am1am2b
2
m þ am1cm2 � bm1bm2�=ðcm1bm2Þ

and

a4m ¼ gm½am1am2g2
m � am1cm2 þ bm1bm2�=ðcm1bm2Þ:

Case 2: Solution 2 applicable

VmðZÞ ¼ Emy11m½cos bmZþ y1m cos gmZ� ð38Þ

and

UmðZÞ ¼ Emy11m½a2m sin bmZþ y1ma4m sin gmZ�; ð39Þ

where

y11m ¼
�f

bm sin bm þ y1mgm sin gm

; y1m ¼ �
a2m sin bm

a4m sin gm

;

a2m ¼ bm½am1am2b
2
m � am1cm2 þ bm1bm2�=ðcm1bm2Þ

and

a4m ¼ gm½am1am2g2
m � am1cm2 þ bm1bm2�=ðcm1bm2Þ:

Case 3: Solution 3 applicable

VmðZÞ ¼ Emy11m½cosh bmZþ y1m cosh gmZ� ð40Þ

and

UmðZÞ ¼ Emy11m½a2m sinh bmZþ y1ma4m sinh gmZ�; ð41Þ

where

y11m ¼
f

bm sinh bm þ y1mgm sinh gm

; y1m ¼ �
a2m sinh bm

a4m sinh gm

;

a2m ¼ bm½am1am2b
2
m þ am1cm2 � bm1bm2�=ðcm1bm2Þ
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and

a4m ¼ gm½am1am2g2
m þ am1cm2 � bm1bm2�=ðcm1bm2Þ:

We turn next to the final building block in this pair. It will be obvious that it cannot be extracted
through transformation of axes of the solution immediately above. It can, however, be extracted,
through interchange of axes, from the building block depicted in Fig. 3. This latter building block
differs only slightly from the first building block of the pair employed in analyzing the symmetric–
symmetric family of modes (Fig. 1). The single difference lies in the fact that now terms
antisymmetric about the x-axis must be deleted in expressions for the quantity VmðZÞ:

Accordingly, Levy type solutions for displacements of the building block of Fig. 3 are those
given by Eqs. (3) and (4) with expressions am1; bm1; etc., as given for the earlier solution.
Proceeding in the established fashion one obtains as solutions for the quantities VmðZÞ the
following.

Case 1: Solution 1 applicable

VmðZÞ ¼ Emy11m½sinh bmZþ y1m sin gmZ� ð42Þ

and

UmðZÞ ¼ Emy11m½a1m cosh bmZþ a3my1m cos gmZ�; ð43Þ

where

y11m ¼
f

bm cosh bm þ y1mgm cos gm

; y1m ¼ �
a1m cosh bm

a3m cos gm

;

a1m ¼ bm½am1am2b
2
m þ am1cm2 � bm1bm2�=ðcm1bm2Þ

and

a3m ¼ �gm½am1am2g2
m � am1cm2 þ bm1bm2�=ðcm1bm2Þ:

Case 2: Solution 2 applicable

VmðZÞ ¼ Emy11m½sin bmZþ y1m sin gmZ� ð44Þ
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and

UmðZÞ ¼ Emy11m½a1m cos bmZþ a3my1m cos gmZ�; ð45Þ

where

y11m ¼
f

bm cos bm þ y1mgm cos gm

; y1m ¼ �
a1m cos bm

a3m cos gm

;

a1m ¼ �bm½am1am2b
2
m � am1cm2 þ bm1bm2�=ðcm1bm2Þ

and

a3m ¼ �gm½am1am2g2
m � am1cm2 þ bm1bm2�=ðcm1bm2Þ:

Case 3: Solution 3 applicable

VmðZÞ ¼ Emy11m½sinh bmZþ y1m sinh gmZ� ð46Þ

and

UmðZÞ ¼ Emy11m½a1m cosh bmZþ a3my1m cosh gmZ�; ð47Þ

where

y11m ¼
f

bm cosh bm þ y1mgm cosh gm

; y1m ¼ �
a1m cosh bm

a3m cosh gm

;

a1m ¼ bm½am1am2b
2
m þ am1cm2 � bm1bm2�=ðcm1bm2Þ

and

a3m ¼ gm½am1am2g2
m þ am1cm2 � bm1bm2�=ðcm1bm2Þ:

The solution for the response of the second building block of Fig. 2 is, of course, obtained through
interchange of axes and by transforming the above solution according to the rules listed earlier.
All of the required building block solutions are now available for analysis of the free in-plane
vibration of the fully clamped plate.

2.3. Development of eigenvalue matrices

Development of the eigenvalue matrix related to any of the three families of in-plane vibration
modes associated with the fully clamped plate is achieved by the following steps completely
analogous to those followed earlier in analyzing the rectangular plate free lateral vibration [3 ] and
free in-plane vibration [1]. For illustrative purposes we will describe the generation of the matrix
related to the symmetric–symmetric mode analysis, only.

Consider the pair of superimposed building blocks prepared for analysis of this mode family.
When superimposed, the solution consisting of the combined pair of building block solutions
satisfies exactly the governing differential equations everywhere in the domain of the quarter
plate, as well as the prescribed boundary conditions along the co-ordinate axes. We need constrain
the unknown driving coefficients only, so that boundary conditions along the other two edges are
satisfied.
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Let us focus on the edge, Z ¼ 1: The boundary condition to be satisfied here is that the net
displacement normal to the edge, V ; should equal zero. To achieve this end we expand the
contributions of both building blocks toward this displacement in a single appropriate series and
require that the net coefficient in each term of this boundary series should vanish. Examining
Eq. (3) it is seen that for this problem it is wise to expand the displacements in the sine series of
this equation. In this way the contribution of the first building block toward the above
displacement is already available in series form. Contributions of the second building block
toward this displacement will be available in a series of functions of the variable, x (Eq. (25)).
These functions are readily expanded in the above sine series following standard Fourier
expansion techniques. Upon adding the contributions of each building block to each term in this
boundary series, and setting the net coefficient of each term equal to zero we obtain a set of K
homogeneous algebraic equations relating the 2K driving coefficients Emð1Þ;Emð2Þ;y;
EmðkÞ;Enð1Þ;Enð2Þ;y;EnðKÞ; where K equals the number of terms used in the building block
solutions as well as the boundary series.

Treating the edge, x ¼ 1; in an analogous fashion, we finally arrive at a set of 2K algebraic
equations relating the 2K unknown driving coefficients. The eigenvalue matrix for the problem is,
in fact, the coefficient matrix of this set of equations. Eigenvalues are those values of the
parameter l2 which cause the determinant of this matrix to vanish. With the eigenvalue
established the associated mode shape of the plate in-plane vibration is obtained by setting one of
the non-zero driving coefficients equal to unity, and solving the resulting set of non-homogeneous
equations for the remaining coefficients. Eigenvalue matrices related to the other mode families
are generated in an identical fashion.

A schematic representation of the eigenvalue matrix generated for the symmetric–symmetric
mode analysis is presented in Fig. 4. The small figures above the matrix represent the first and
second building blocks employed. Small inserts to the right of the figure indicate the boundary
along which a boundary condition is being enforced. Short dashes indicate non-zero matrix
elements.

The first row of elements represents the coefficients by which the driving coefficients Em; En;
etc., must be multiplied to form the first homogeneous algebraic equation associated with net
displacement normal to the edge, Z ¼ 1: The second row represents the second equation, etc. It
will be noted that, because of our choice of series to represent net displacements, the upper left
quadrant and lower right quadrant of the matrix are of the diagonal type. The lower set of rows in
the matrix pertain, of course, to the edge, x ¼ 1: In the case of a square plate each element in the
upper set of rows will equal its corresponding element in the lower set for symmetric–symmetric,
and antisymmetric–antisymmetric mode investigations.

Before examining computed results we will look at the analysis of plates with simple support
along all edges.

2.4. In-plane free vibration of the simply supported rectangular plate

A rectangular plate is considered to be simply supported if displacements parallel to all edges
are forbidden and plate normal stress along each edge equals zero.

It was shown by Lord Rayleigh that exact free vibration frequencies for in-plane vibration of
simply supported rectangular plates could be obtained as a special case of the free in-plane
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vibration of an infinitely long thin-walled cylindrical shell [4]. The analysis was accomplished by
means of energy considerations and the rectangular plate analysis was achieved by letting the shell
radius approach infinity. Rayleigh also demonstrated that there were two distinct families of
modes associated with simply supported rectangular plate free vibration. In one family, known as
‘pure shear modes’, the in-plane stresses running normal to the plate edges are everywhere zero. In
the other family, known as ‘extensional modes’, the vibratory motion consists of pure sinusoidal
extension in directions perpendicular to the plate edges.

In this paper it is shown that exact Levy type solutions can be obtained for each of the two
mode families.

2.4.1. Analysis of the pure shear modes
We begin by returning to the equilibrium Eqs. (1) and (2) and this time express them in terms of

in-plane displacements with the condition that s�x ¼ s�y ¼ 0: Proceeding in a manner as described
for the general equilibrium equations we arrive at the new set of non-dimensionalized equations:

a66

f2

@2U

@Z2
þ

a66

f
@2V

@x @Z
þ l4U ¼ 0 ð48Þ

and

a66
@2V

@x2
þ

a66

f
@2U

@x@Z
þ l4V ¼ 0: ð49Þ
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Fig. 4. Schematic representation of eigenvalue matrix utilized in analyzing in-plane vibration modes of fully clamped

rectangular plate. Matrix based on three-term building block solutions.
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Consider a rectangular plate given simple support, as defined above, along all edges. Let the
co-ordinates x; and Z; run along the upper and left edges of the full plate, respectively, (Fig. 5). We
express the displacements U and V as

Uðx; ZÞ ¼
XN

m¼1;2

UmðZÞcosðm � 1Þpx ð50Þ

and

V ðx; ZÞ ¼
XN

m¼1;2

VmðZÞsinðm � 1Þpx: ð51Þ

These represent Levy type solutions for displacements of the plate under consideration. For any
value of ‘m’, prescribed boundary conditions along edges at the extremities of the trigonometric
functions are completely satisfied. Let us begin by considering solutions associated with any value
of m; m > 1:

Substituting the above forms of solution in the equilibrium equations we obtain

am1U 00
mðZÞ þ bm1V 0

mðZÞ þ CmUmðZÞ ¼ 0 ð52Þ

and

bm2U 0
mðZÞ þ Cm2VmðZÞ ¼ 0; ð53Þ

where

am1 ¼
a66

f2
; bm1 ¼

a66EMP

f
;

cm1 ¼ l4; bm2 ¼
�a66EMP

f

and

cm2 ¼ �a66 EMPS þ l4:

Here, EMP ¼ ðm � 1Þp; and EMPS ¼ EMP squared.
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Fig. 5. Co-ordinate system for full rectangular plate with simple support along all edges.
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Differentiating Eq. (52) once with respect to Z and utilizing Eq. (53) to express the quantities
U 000

m ðZÞ and U 0
mðZÞ in terms of VmðZÞ or its derivatives we arrive at a second order ordinary

differential equation governing the quantity VmðZÞ thus,

V 00
mðZÞ þ a2VmðZÞ ¼ 0; ð54Þ

where a2 ¼ cm1cm2=ðam1cm2 � bm1bm2Þ:
The quantity a2 is found to be positive for all problems investigated here. The solution for

Eq. (54) is therefore written as

VmðZÞ ¼ Am sin aZþ Bm cos aZ; ð55Þ

where Am and Bm are constants to be determined.

UmðZÞ ¼ 0jZ¼0; this implies Am ¼ 0;

also

UmðZÞ ¼ 0jZ¼1; which implies;

Bm sin ðaÞ ¼ 0: ð56Þ

With Bm not equal zero Eq. (56) is satisfied only if a ¼ np; n ¼ 1; 2; etc. The eigenvalues for this
problem are then the values of the parameter l2 which for any integer values of m and n; (mX2),
satisfies the equality

a2 ¼ ðnpÞ2: ð57Þ

These eigenvalues are easily obtained with a simple computer routine.
We next turn to the situation when m equals 1. Examining Eqs. (50) and (51) it is seen that

displacement V will equal zero everywhere while displacement U will be a function of Z; only. In
this case equilibrium Eq. (48), only, will be applicable and re-arranging it we obtain

@2UðZÞ
@Z2

þ a2UðZÞ ¼ 0; ð58Þ

where here, a2 ¼ l4f2=a66:
a2 will always be positive and the solution of Eq. (58) is written as

UðZÞ ¼ A sin aZþ B cos aZ: ð59Þ

Since UðZÞjZ¼0 ¼ 0; B ¼ 0; and since UðZÞjZ¼1 ¼ 0:
We write

A sin a ¼ 0: ð60Þ

a can therefore only take on values np; n ¼ 1; 2; etc.
Re-arranging the expression for a2 we obtain

l2 ¼ np
ffiffiffiffiffiffi
a66

f2

r
; ð61Þ
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where n is a positive integer. Exact eigenvalues for this family of modes are therefore obtained
immediately from Eq. (61).

2.4.2. Analysis of the extensional modes
We begin by examining the first building block utilized in analyzing the symmetric–symmetric

modes of the fully clamped plate. Levy type solutions for the in-plane displacements of this
building block are provided by Eqs. (3) and (4). Examining these series solutions it is seen that
they satisfy exactly the prescribed simple support boundary conditions along the plate edges,
x ¼ 0; and x ¼ 1: Expressions for the functions VmðZÞ and UmðZÞ as already given by Eqs. (10)–(12),
are again applicable. In fact, the same boundary conditions imposed along the edge, Z ¼ 0; for the
earlier building block solution are to be imposed here. We must also enforce the condition of zero
normal stress along the edge, Z ¼ 1; as well as zero displacement parallel to this edge.

It will be appreciated, in view of the simple support edge conditions, that solution for the
quantity VmðZÞ can be composed of trigonometric terms only. Solution must therefore take the
form as given by case 2 associated with the earlier building block, i.e.,

VmðZÞ ¼ Bm½cos bmZþ y1m cos gmZ� ð62Þ

and

UmðZÞ ¼ Bm½a2m sin bmZþ y1ma4m sin gmZ�; ð63Þ

where, y1m ¼ �a2m sin bm=ða4m sin gmÞ:
Enforcing the boundary condition of zero plate displacement parallel to the edge, Z� 1; we

obtain the eigenvalue equation

a2m sin bm þ y1ma4m sin gm ¼ 0: ð64Þ

This equation is satisfied for values of bm ¼ np; n ¼ 1; 2; etc., in which case y1m will equal zero.
Solution is therefore obtained, with any value of m selected, by searching for values of the

parameter l2 which cause bm to take on the above values.

3. Presentation of computed results

3.1. The fully clamped plate

The first step to be taken before computing tabulated theoretical results is to study convergence
rates and decide upon a satisfactory value for K ; the number of terms to be utilized in the building
block solutions. Here we adopt the practice followed earlier in plate lateral vibration studies and
compute the eigenvalues to four significant digit accuracy. It is also pointed out that in the interest
of conformity with other researchers work, all tabulated eigenvalues presented here are non-
dimensionalized with respect to the full plate edge length ‘a’.

In Table 1, eigenvalues are tabulated for a typical convergence test. Computations here are
carried to five significant digits for the first symmetric–symmetric mode of the fully clamped
square plate, as a function of the parameter K : A value of 0.3 has been used for the Poisson ratio
in all calculations reported here.
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It is seen in Table 1 that there is no change, even in the fifth significant digit, as parameter K is
increased from three to 13. It has been decided to utilize a value of K equal to 11 in all
computations for the fully clamped plate. This will provide more than the required convergence as
we are interested in four significant digit accuracy in tabulated results.

In Table 2 computed eigenvalues are tabulated, based on the superposition method, for
symmetric–symmetric modes of fully clamped plates with aspect ratios of 1.0 and 0.5. A
corresponding set of results for antisymmetric–antisymmetric modes is presented in Table 3.

It is found that the most applicable data that can be located for purposes of comparison is that
of Bardell et al. [2]. As indicated earlier, they have employed a Rayleigh–Ritz method utilizing a
rather complicated set of functions to represent the plate in-plane displacements. Accordingly,
where available, their computed results will be tabulated along with the present results for the
purposes of comparison.

It will be appreciated that there will be essentially two distinct families of symmetric–
antisymmetric modes associated with non-square plates. Both can be studied utilizing the
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Table 1

Computed eigenvalues versus K for first symmetric–symmetric mode of the fully clamped square plate

K l2 K l2

3 4.2350 9 4.2350

5 4.2350 11 4.2350

7 4.2350 13 4.2350

Table 2

First four symmetric–symmetric mode eigenvalues, l2; for fully clamped plates of aspect ratios 1.0 and 0.5

Mode j ¼ 1:0 j ¼ 0:5

Present Ref. [2] Present Ref. [2]

1 4.235 4.235 6.712 6.712

2 5.186 5.186 8.140 8.140

3 7.597 — 8.998 —

4 7.800 — 11.57 —

Table 3

First four antisymmetric–antisymmetric mode eigenvalues, l2; for fully clamped plates of aspect ratios 1.0 and 0.5

Mode j ¼ 1:0 j ¼ 0:5

Present Ref. [2] Present Ref. [2]

1 5.859 5.859 7.049 7.049

2 6.708 — 11.25 —

3 7.281 — 11.74 —

4 8.718 — 12.93 —
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symmetric–antisymmetric mode analysis already described. To study modes which are symmetric
with respect to the Z-axis and antisymmetric with respect to the x-axis one simply replaces the
aspect ratio of the plate with its inverse. This approach was utilized in preparation of the data of
Table 4. Here the symbols to the right of the table, S–A, and A–S, indicate modes related to the
plate of aspect ratio 0.5, which are symmetric with respect to the x-axis and antisymmetric with
respect to the Z-axis, or antisymmetric with respect to the x-axis and symmetric with respect to the
Z-axis, respectively.

It will be noted that there is excellent agreement between results computed by means of the
present analysis and corresponding results reported by the authors of reference [2]. In almost all
cases these results agree to four significant digits. This lends a high degree of confidence with
respect to both mathematical procedures. In every case where comparison is possible there is also
agreement between mode shapes computed by the present method and those reported in Ref. [2].

3.2. The rectangular plate with simple support along all edges

Following the practice of Bardell et al. [2], we let ‘m’ and ‘n’ equal the number of half-waves in
displacement running in the x and Z directions, respectively, for the simply supported rectangular
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Table 4

First four symmetric–antisymmetric mode eigenvalues, l2; for fully clamped plates of aspect ratios 1.0 and 0.5

Mode j ¼ 1:0 j ¼ 0:5

Present Ref. [2] Present Ref. [2]

1 3.555 3.555 4.789 4.789 A–S

2 3.555 3.555 6.379 6.379 S–A

3 5.894 5.895 7.608 — S–A

4 5.894 5.895 9.515 — A–S

Table 5

Computed eigenvalues, l2; for various mode shapes of the simply supported rectangular plate, j ¼ 1:0

m; n Present Ref. [2] m; n Present Ref. [2]

0, 1 1.859 1.859 2, 2 5.257 5.257

1, 0 1.859 1.859 0, 3 5.576 5.576

1, 1 2.628 2.628 3, 0 5.576 5.576

0, 2 3.717 3.717 1, 3 5.877 5.877

2, 0 3.717 3.717 3, 1 5.877 5.877

1, 2 4.156 4.156 2, 3 6.701 6.701

2, 1 4.156 4.156 3, 2 6.701 6.701

1, 1� 4.443 4.443 2, 1� 7.025 7.025

�Indicates longitudinal (extensional) vibration. All other modes are of the pure shear type.
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plate modes of vibration. Eigenvalues for the various mode shapes of vibration of a square plate
as computed by the present analysis are presented in Table 5. Corresponding results reported by
Bardell et al. are also presented. for purposes of comparison. They have utilized the energy related
analysis of Lord Rayleigh to verify their results for all simply supported plate studies.

In Table 6 results are presented for a simply supported rectangular plate with aspect ratio, b=a;
equal to 0.5.

It will be observed that agreement is exact. In the present approach, unlike the Rayleigh–Ritz
approach of Ref. [2], no convergence process is involved, and results are exact, as are those of
Lord Rayleigh reported in the same reference.
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Table 6

Computed eigenvalues, l2; for various mode shapes of the simply supported rectangular plate, j ¼ 0:5

m; n Present Ref. [2] m; n Present Ref. [2]

1, 0 1.859 1.859 0, 2 7.434 7.434

0, 1 3.717 3.717 4, 0 7.434 7.434

2, 0 3.717 3.717 1, 2 7.663 7.663

1, 1 4.156 4.156 2, 2 8.312 8.312

2, 1 5.257 5.257 4, 1 8.312 8.312

3, 0 5.576 5.576 2, 1� 8.886 8.886

3, 1 6.701 6.701 3, 2 9.293 9.293

1, 1� 7.025 7.025 5, 0 9.293 9.293

�Indicates longitudinal (extensional) vibration. All other modes are of the pure shear type.

Fig. 6. First symmetric–symmetric mode quarter plate displacements for fully clamped square plate.
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3.3. Free vibration mode shapes of the fully clamped plate

Computed first mode free in-plane vibration mode shapes for square plates are depicted in
Figs. 6–8. These shapes pertain to fully symmetric, fully antisymmetric, and symmetric–antisymmetric
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Fig. 7. First antisymmetric–antisymmetric mode quarter plate displacements for fully clamped square plate.

Fig. 8. First symmetric–antisymmetric mode quarter plate displacements for fully clamped square plate.
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mode vibration, respectively. Quarter plate in-plane displacements are depicted, only, since
presentation of full plate figures would provide no further information to the reader.

It will be noted that clamped edge conditions (no in-plane motion) are fulfilled along all of the
quarter plate outer edges. Symmetric mode conditions are fulfilled along both axes of Fig. 6.
Displacements along the axes are everywhere zero. Displacements perpendicular to the axes are
non-zero and, in fact, take on extremum values at these quarter plate boundaries. It will be noted,
as expected, that this first fully symmetric mode motion is the simplest motion possible, consistent
with the imposed boundary conditions.

Similar comments can be made about the first fully antisymmetric mode of Fig. 7. The principal
difference is that now the mode shape has an antisymmetric distribution with respect to the axes.
It will be noted that there is zero in-plane motion normal to these axes. Here displacements
parallel to the axes take on extremum values.

Comments made regarding the above two mode families and their respective boundary
conditions apply equally well to the mode shape of Fig. 8. Here, of course, symmetric
mode conditions are to be observed along the upper edge of the quarter plate while anti-
symmetric mode conditions are observed along the quarter plate left edge. In all of these
modes good agreement is encountered on comparing the present results with results inferred
from Ref. [2].

Since mode shapes for plates with simple support along all edges involve simple trigonometric
functions only, running in both directions, there is nothing to be gained here by depicting this
mode shape family.

4. Discussion and conclusions

It is found that the superposition method provides a highly convergent and highly accurate
means for computing in-plane free vibration eigenvalues for fully clamped rectangular plates. The
governing differential equations are satisfied exactly throughout the domain of the plate and
boundary conditions are satisfied to any desired degree of accuracy.

In the case of simply supported plates it is shown that exact free vibration eigenvalues are
obtained by means of single term Levy type solutions. Solutions are obtained by utilizing a
slightly different approach for the families of pure shear modes and extensional modes. Excellent
agreement with results obtained by other mathematical techniques is observed.

It will be apparent to the reader that the superposition method employed here, and in a
preceding publication [1], will lend itself readily to the computing of accurate eigenvalues for in-
plane vibration of plates with various combinations of classical, free, clamped, and simply
supported boundary conditions. It will be obvious that analytical procedures for handling some of
these problems are inherent in material presented here. The quarter-plate solution for symmetric–
symmetric modes of the fully clamped plate will in fact be identical to that required for analyzing
full rectangular plates with two adjacent simply supported and two adjacent clamped edges. The
corresponding solution for the completely free plate, [1], handles full rectangular plates with pairs
of adjacent simply supported and free edges. This constitutes an additional advantage obtained
when it is decided to analyze quarter plate segments where the full plate has uniform boundary
conditions.
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It is apparent that the present method will constitute a powerful tool for analyzing the in-plane
vibration of plates with fixed in-plane support points, attached local masses, in-plane elastic
boundary support, etc. Procedures to be followed will be analogous to those utilized in analyzing
problems related to plate lateral free vibration. Application of the method to these problems
represents a future challenge:

VmðZÞ ¼ Am sinh bmZþ Bm cosh bmZþ Cm sin gmZþ Dm cos gmZ:

Appendix A. Nomenclature

a; b rectangular plate edge lengths
a11 1.0
a12 v

a66 ð1 � vÞ=2
E Young’s modulus of plate material
K number of terms utilized in building block solutions
u; v plate in-plane displacements in x and y (x and Z) directions, respectively
U ;V dimensionless plate displacements, U ¼ u=a; V ¼ v=a

x; y rectangular plate coordinates
x; Z dimensionless coordinates, x ¼ x=a; Z ¼ y=b

v Poisson’s ratio (taken as 0.3)
F plate aspect ratio, b=a

l2 dimensionless frequency of plate vibration, l2 ¼ oa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1 � v2Þ=E

p
o circular frequency of plate vibration
r mass density of plate material
s�x ;s

�
y ; t

�
xy dimensionless in-plane normal and shear stresses, defined in text
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